Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
J Inherit Metab Dis ; 47(2): 280-288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200664

RESUMO

Glyoxylate is a key metabolite generated from various precursor substrates in different subcellular compartments including mitochondria, peroxisomes, and the cytosol. The fact that glyoxylate is a good substrate for the ubiquitously expressed enzyme lactate dehydrogenase (LDH) requires the presence of efficient glyoxylate detoxification systems to avoid the formation of oxalate. Furthermore, this detoxification needs to be compartment-specific since LDH is actively present in multiple subcellular compartments including peroxisomes, mitochondria, and the cytosol. Whereas the identity of these protection systems has been established for both peroxisomes and the cytosol as concluded from the deficiency of alanine glyoxylate aminotransferase (AGT) in primary hyperoxaluria type 1 (PH1) and glyoxylate reductase (GR) in PH2, the glyoxylate protection system in mitochondria has remained less well defined. In this manuscript, we show that the enzyme glyoxylate reductase has a bimodal distribution in human embryonic kidney (HEK293), hepatocellular carcinoma (HepG2), and cervical carcinoma (HeLa) cells and more importantly, in human liver, and is actively present in both the mitochondrial and cytosolic compartments. We conclude that the metabolism of glyoxylate in humans requires the complicated interaction between different subcellular compartments within the cell and discuss the implications for the different primary hyperoxalurias.


Assuntos
Oxirredutases do Álcool , Mitocôndrias Hepáticas , Transaminases , Humanos , Mitocôndrias Hepáticas/metabolismo , Células HEK293 , Oxalatos/metabolismo , Fígado/metabolismo , Glioxilatos/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38181883

RESUMO

AIM: Sjögren-Larsson syndrome (SLS) is a rare neurometabolic disorder that mainly affects brain, eye and skin and is caused by deficiency of fatty aldehyde dehydrogenase. Our recent finding of a profoundly disturbed brain tissue lipidome in SLS prompted us to search for similar biomarkers in plasma as no functional test in blood is available for SLS. METHODS AND RESULTS: We performed plasma lipidomics and used a newly developed bioinformatics tool to mine the untargeted part of the SLS plasma and brain lipidome to search for SLS biomarkers. Plasma lipidomics showed disturbed ether lipid metabolism in known lipid classes. Untargeted lipidomics of both plasma and brain (white and grey matter) uncovered two new endogenous lipid classes highly elevated in SLS. The first biomarker group were alkylphosphocholines/ethanolamines containing different lengths of alkyl-chains where some alkylphosphocholines were > 600-fold elevated in SLS plasma. The second group of biomarkers were a set of 5 features of unknown structure. Fragmentation studies suggested that they contain ubiquinol and phosphocholine and one feature was also found as a glucuronide conjugate in plasma. The plasma features were highly distinctive for SLS with levels >100-1000-fold the level in controls, if present at all. We speculate on the origin of the alkylphosphocholines/ethanolamines and the nature of the ubiquinol-containing metabolites. CONCLUSIONS: The metabolites identified in this study represent novel endogenous lipid classes thus far unknown in humans. They represent the first plasma metabolite SLS-biomarkers and may also yield more insight into SLS pathophysiology.


Assuntos
Síndrome de Sjogren-Larsson , Humanos , Síndrome de Sjogren-Larsson/diagnóstico , Síndrome de Sjogren-Larsson/metabolismo , Lipidômica , Pele/metabolismo , Etanolaminas , Lipídeos
3.
Orphanet J Rare Dis ; 19(1): 15, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221620

RESUMO

BACKGROUND: Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder resulting from pathogenic variants in three distinct genes, with most of the variants occurring in the electron transfer flavoprotein-ubiquinone oxidoreductase gene (ETFDH). Recent evidence of potential founder variants for MADD in the South African (SA) population, initiated this extensive investigation. As part of the International Centre for Genomic Medicine in Neuromuscular Diseases study, we recruited a cohort of patients diagnosed with MADD from academic medical centres across SA over a three-year period. The aim was to extensively profile the clinical, biochemical, and genomic characteristics of MADD in this understudied population. METHODS: Clinical evaluations and whole exome sequencing were conducted on each patient. Metabolic profiling was performed before and after treatment, where possible. The recessive inheritance and phase of the variants were established via segregation analyses using Sanger sequencing. Lastly, the haplotype and allele frequencies were determined for the two main variants in the four largest SA populations. RESULTS: Twelve unrelated families (ten of White SA and two of mixed ethnicity) with clinically heterogeneous presentations in 14 affected individuals were observed, and five pathogenic ETFDH variants were identified. Based on disease severity and treatment response, three distinct groups emerged. The most severe and fatal presentations were associated with the homozygous c.[1067G > A];c.[1067G > A] and compound heterozygous c.[976G > C];c.[1067G > A] genotypes, causing MADD types I and I/II, respectively. These, along with three less severe compound heterozygous genotypes (c.[1067G > A];c.[1448C > T], c.[740G > T];c.[1448C > T], and c.[287dupA*];c.[1448C > T]), resulting in MADD types II/III, presented before the age of five years, depending on the time and maintenance of intervention. By contrast, the homozygous c.[1448C > T];c.[1448C > T] genotype, which causes MADD type III, presented later in life. Except for the type I, I/II and II cases, urinary metabolic markers for MADD improved/normalised following treatment with riboflavin and L-carnitine. Furthermore, genetic analyses of the most frequent variants (c.[1067G > A] and c.[1448C > T]) revealed a shared haplotype in the region of ETFDH, with SA population-specific allele frequencies of < 0.00067-0.00084%. CONCLUSIONS: This study reveals the first extensive genotype-phenotype profile of a MADD patient cohort from the diverse and understudied SA population. The pathogenic variants and associated variable phenotypes were characterised, which will enable early screening, genetic counselling, and patient-specific treatment of MADD in this population.


Assuntos
Deficiência Múltipla de Acil Coenzima A Desidrogenase , Humanos , Pré-Escolar , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação/genética , África do Sul , Genótipo , Riboflavina/uso terapêutico , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/uso terapêutico , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo
4.
Orphanet J Rare Dis ; 18(1): 358, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974207

RESUMO

BACKGROUND: Zellweger spectrum disorders (ZSD) and X-linked adrenoleukodystrophy (X-ALD) are inherited metabolic diseases characterized by dysfunction of peroxisomes, that are essential for lipid metabolism and redox balance. Oxidative stress has been reported to have a significant role in the pathogenesis of neurodegenerative diseases such as peroxisomal disorders, but little is known on the intracellular activation of Mitogen-activated protein kinases (MAPKs). Strictly related to oxidative stress, a correct autophagic machinery is essential to eliminated oxidized proteins and damaged organelles. The aims of the current study are to investigate a possible implication of MAPK pathways and autophagy impairment as markers and putative therapeutic targets in X-ALD and ZSDs. METHODS: Three patients with ZSD (2 M, 1 F; age range 8-17 years) and five patients with X-ALD (5 M; age range 5- 22 years) were enrolled. A control group included 6 healthy volunteers. To evaluate MAPKs pathway, p-p38 and p-JNK were assessed by western blot analysis on peripheral blood mononuclear cells. LC3II/LC3I ratio was evaluated ad marker of autophagy. RESULTS: X-ALD and ZSD patients showed elevated p-p38 values on average 2- fold (range 1.21- 2.84) and 3.30-fold (range 1.56- 4.26) higher when compared with controls, respectively. p-JNK expression was on average 12-fold (range 2.20-19.92) and 2.90-fold (range 1.43-4.24) higher in ZSD and X-ALD patients than in controls. All patients had altered autophagic flux as concluded from the reduced LC3II/I ratio. CONCLUSIONS: In our study X-ALD and ZSD patients present an overactivation of MAPK pathways and an inhibition of autophagy. Considering the absence of successful therapies and the growing interest towards new therapies with antioxidants and autophagy inducers, the identification and validation of biomarkers to monitor optimal dosing and biological efficacy of the treatments is of prime interest.


Assuntos
Adrenoleucodistrofia , Síndrome de Zellweger , Humanos , Criança , Adolescente , Pré-Escolar , Adulto Jovem , Adulto , Adrenoleucodistrofia/genética , Síndrome de Zellweger/metabolismo , Leucócitos Mononucleares/metabolismo , Peroxissomos/metabolismo , Oxirredução
5.
Cell Rep ; 42(9): 113043, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37647199

RESUMO

The malate-aspartate shuttle (MAS) is a redox shuttle that transports reducing equivalents across the inner mitochondrial membrane while recycling cytosolic NADH to NAD+. We genetically disrupted each MAS component to generate a panel of MAS-deficient HEK293 cell lines in which we performed [U-13C]-glucose tracing. MAS-deficient cells have reduced serine biosynthesis, which strongly correlates with the lactate M+3/pyruvate M+3 ratio (reflective of the cytosolic NAD+/NADH ratio), consistent with the NAD+ dependency of phosphoglycerate dehydrogenase in the serine synthesis pathway. Among the MAS-deficient cells, those lacking malate dehydrogenase 1 (MDH1) show the most severe metabolic disruptions, whereas oxoglutarate-malate carrier (OGC)- and MDH2-deficient cells are less affected. Increasing the NAD+-regenerating capacity using pyruvate supplementation resolves most of the metabolic disturbances. Overall, we show that the MAS is important for de novo serine biosynthesis, implying that serine supplementation could be used as a therapeutic strategy for MAS defects and possibly other redox disorders.


Assuntos
Ácido Aspártico , Malatos , Humanos , Ácido Aspártico/metabolismo , Malatos/metabolismo , NAD/metabolismo , Células HEK293 , Oxirredução , Piruvatos
6.
J Biol Chem ; 299(9): 105047, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451483

RESUMO

Recently, biallelic variants in PLPBP coding for pyridoxal 5'-phosphate homeostasis protein (PLPHP) were identified as a novel cause of early-onset vitamin B6-dependent epilepsy. The molecular function and precise role of PLPHP in vitamin B6 metabolism are not well understood. To address these questions, we used PLPHP-deficient patient skin fibroblasts and HEK293 cells and YBL036C (PLPHP ortholog)-deficient yeast. We showed that independent of extracellular B6 vitamer type (pyridoxine, pyridoxamine, or pyridoxal), intracellular pyridoxal 5'-phosphate (PLP) was lower in PLPHP-deficient fibroblasts and HEK293 cells than controls. Culturing cells with pyridoxine or pyridoxamine led to the concentration-dependent accumulation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate (PMP), respectively, suggesting insufficient pyridox(am)ine 5'-phosphate oxidase activity. Experiments utilizing 13C4-pyridoxine confirmed lower pyridox(am)ine 5'-phosphate oxidase activity and revealed increased fractional turnovers of PLP and pyridoxal, indicating increased PLP hydrolysis to pyridoxal in PLPHP-deficient cells. This effect could be partly counteracted by inactivation of pyridoxal phosphatase. PLPHP deficiency had a distinct effect on mitochondrial PLP and PMP, suggesting impaired activity of mitochondrial transaminases. Moreover, in YBL036C-deficient yeast, PLP was depleted and PMP accumulated only with carbon sources requiring mitochondrial metabolism. Lactate and pyruvate accumulation along with the decrease of tricarboxylic acid cycle intermediates downstream of α-ketoglutarate suggested impaired mitochondrial oxidative metabolism in PLPHP-deficient HEK293 cells. We hypothesize that impaired activity of mitochondrial transaminases may contribute to this depletion. Taken together, our study provides new insights into the pathomechanisms of PLPBP deficiency and reinforces the link between PLPHP function, vitamin B6 metabolism, and mitochondrial oxidative metabolism.


Assuntos
Mitocôndrias , Vitamina B 6 , Humanos , Células HEK293 , Proteínas/genética , Proteínas/metabolismo , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transaminases/metabolismo , Vitamina B 6/metabolismo , Fibroblastos , Células Cultivadas , Piridoxaminafosfato Oxidase/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oxirredução , Aminoácidos/metabolismo
7.
Genet Med ; 25(11): 100944, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37493040

RESUMO

PURPOSE: Zellweger spectrum disorders (ZSDs) are known as autosomal recessive disorders caused by defective peroxisome biogenesis due to bi-allelic pathogenic variants in any of at least 13 different PEX genes. Here, we report 2 unrelated patients who present with an autosomal dominant ZSD. METHODS: We performed biochemical and genetic studies in blood and skin fibroblasts of the patients and demonstrated the pathogenicity of the identified PEX14 variants by functional cell studies. RESULTS: We identified 2 different single heterozygous de novo variants in the PEX14 genes of 2 patients diagnosed with ZSD. Both variants cause messenger RNA mis-splicing, leading to stable expression of similar C-terminally truncated PEX14 proteins. Functional studies indicated that the truncated PEX14 proteins lost their function in peroxisomal matrix protein import and cause increased degradation of peroxisomes, ie, pexophagy, thus exerting a dominant-negative effect on peroxisome functioning. Inhibition of pexophagy by different autophagy inhibitors or genetic knockdown of the peroxisomal autophagy receptor NBR1 resulted in restoration of peroxisomal functions in the patients' fibroblasts. CONCLUSION: Our finding of an autosomal dominant ZSD expands the genetic repertoire of ZSDs. Our study underscores that single heterozygous variants should not be ignored as possible genetic cause of diseases with an established autosomal recessive mode of inheritance.


Assuntos
Síndrome de Zellweger , Humanos , Alelos , Peroxissomos/genética , Peroxissomos/metabolismo , Transporte Proteico/fisiologia , Proteínas/genética , Síndrome de Zellweger/genética
8.
Free Radic Biol Med ; 206: 22-32, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37355054

RESUMO

Reduced (NADH) and oxidized (NAD+) nicotinamide adenine dinucleotides are ubiquitous hydride-donating/accepting cofactors that are essential for cellular bioenergetics. Peroxisomes are single-membrane-bounded organelles that are involved in multiple lipid metabolism pathways, including beta-oxidation of fatty acids, and which contain several NAD(H)-dependent enzymes. Although maintenance of NAD(H) homeostasis in peroxisomes is considered essential for peroxisomal beta-oxidation, little is known about the regulation thereof. To resolve this issue, we have developed methods to specifically measure intraperoxisomal NADH levels in human cells using peroxisome-targeted NADH biosensors. By targeted CRISPR-Cas9-mediated genome editing of human cells, we showed with these sensors that the NAD+/NADH ratio in cytosol and peroxisomes are closely connected and that this crosstalk is mediated by intraperoxisomal lactate and malate dehydrogenases, generated via translational stop codon readthrough of the LDHB and MDH1 mRNAs. Our study provides evidence for the existence of two independent redox shuttle systems in human peroxisomes that regulate peroxisomal NAD+/NADH homeostasis. This is the first study that shows a specific metabolic function of protein isoforms generated by translational stop codon readthrough in humans.


Assuntos
NAD , Peroxissomos , Humanos , NAD/metabolismo , Códon de Terminação/metabolismo , Peroxissomos/metabolismo , Biossíntese de Proteínas , Oxirredução , Homeostase
9.
Physiol Rev ; 103(1): 957-1024, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35951481

RESUMO

Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.


Assuntos
Peroxissomos , Animais , Humanos , Camundongos
10.
J Inherit Metab Dis ; 46(2): 273-285, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36522796

RESUMO

Peroxisomes are essential organelles involved in lipid metabolisms including plasmalogen biosynthesis and ß-oxidation of very long-chain fatty acids. Peroxisomes proliferate by the growth and division of pre-existing peroxisomes. The peroxisomal membrane is elongated by Pex11ß and then divided by the dynamin-like GTPase, DLP1 (also known as DRP1 encoded by DNM1L gene), which also functions as a fission factor for mitochondria. Nucleoside diphosphate kinase 3 (NME3) localized in both peroxisomes and mitochondria generates GTP for DLP1 activity. Deficiencies of either of these factors induce abnormal morphology of peroxisomes and/or mitochondria, and are associated with central nervous system dysfunction. To investigate whether the impaired division of peroxisomes affects lipid metabolisms, we assessed the phospholipid composition of cells lacking each of the different division factors. In fibroblasts from the patients deficient in DLP1, NME3, or Pex11ß, docosahexaenoic acid (DHA, C22:6)-containing phospholipids were found to be decreased. Conversely, the levels of several fatty acids such as arachidonic acid (AA, C20:4) and oleic acid (C18:1) were elevated. Mouse embryonic fibroblasts from Drp1- and Pex11ß-knockout mice also showed a decrease in the levels of phospholipids containing DHA and AA. Collectively, these results suggest that the dynamics of organelle morphology exert marked effects on the fatty acid composition of phospholipids.


Assuntos
Ácidos Docosa-Hexaenoicos , Peroxissomos , Animais , Camundongos , Ácidos Docosa-Hexaenoicos/metabolismo , Dinaminas/metabolismo , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Morfogênese , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Peroxissomos/metabolismo , Fosfolipídeos/metabolismo
11.
Mol Syst Biol ; 18(9): e11186, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36164978

RESUMO

Seventy years following the discovery of peroxisomes, their complete proteome, the peroxi-ome, remains undefined. Uncovering the peroxi-ome is crucial for understanding peroxisomal activities and cellular metabolism. We used high-content microscopy to uncover peroxisomal proteins in the model eukaryote - Saccharomyces cerevisiae. This strategy enabled us to expand the known peroxi-ome by ~40% and paved the way for performing systematic, whole-organellar proteome assays. By characterizing the sub-organellar localization and protein targeting dependencies into the organelle, we unveiled non-canonical targeting routes. Metabolomic analysis of the peroxi-ome revealed the role of several newly identified resident enzymes. Importantly, we found a regulatory role of peroxisomes during gluconeogenesis, which is fundamental for understanding cellular metabolism. With the current recognition that peroxisomes play a crucial part in organismal physiology, our approach lays the foundation for deep characterization of peroxisome function in health and disease.


Assuntos
Peroxissomos , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxissomos/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
J Inherit Metab Dis ; 45(6): 1094-1105, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053831

RESUMO

Classical galactosemia (CG) is one of the more frequent inborn errors of metabolism affecting approximately 1:40.000 people. Despite a life-saving galactose-restricted diet, patients develop highly variable long-term complications including intellectual disability and movement disorders. The pathophysiology of these complications is still poorly understood and development of new therapies is hampered by a lack of valid prognostic biomarkers. Multi-omics approaches may discover new biomarkers and improve prediction of patient outcome. In the current study, (semi-)targeted mass-spectrometry based metabolomics and lipidomics were performed in erythrocytes of 40 patients with both classical and variant phenotypes and 39 controls. Lipidomics did not show any significant changes or deficiencies. The metabolomics analysis revealed that CG does not only compromise the Leloir pathway, but also involves other metabolic pathways including glycolysis, the pentose phosphate pathway, and nucleotide metabolism in the erythrocyte. Moreover, the energy status of the cell appears to be compromised, with significantly decreased levels of ATP and ADP. This possibly is the consequence of two different mechanisms: impaired formation of ATP from ADP possibly due to reduced flux though the glycolytic pathway and trapping of phosphate in galactose-1-phosphate (Gal-1P) which accumulates in CG. Our findings are in line with the current notion that the accumulation of Gal-1P plays a key role in the pathophysiology of CG not only by depletion of intracellular phosphate levels but also by decreasing metabolite abundance downstream in the glycolytic pathway and affecting other pathways. New therapeutic options for CG could be directed towards the restoration of intracellular phosphate homeostasis.


Assuntos
Galactosemias , Humanos , Galactosemias/genética , Galactose/metabolismo , Redes e Vias Metabólicas , Biomarcadores/metabolismo , Fosfatos , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
13.
Mol Genet Metab Rep ; 31: 100873, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782614

RESUMO

Isolated long-chain 3-keto-acyl CoA thiolase (LCKAT) deficiency is a rare long-chain fatty acid oxidation disorder caused by mutations in HADHB. LCKAT is part of a multi-enzyme complex called the mitochondrial trifunctional protein (MTP) which catalyzes the last three steps in the long-chain fatty acid oxidation. Until now, only three cases of isolated LCKAT deficiency have been described. All patients developed a severe cardiomyopathy and died before the age of 7 weeks. Here, we describe a newborn with isolated LCKAT deficiency, presenting with neonatal-onset cardiomyopathy, rhabdomyolysis, hypoglycemia and lactic acidosis. Bi-allelic 185G > A (p.Arg62His) and c1292T > C (p.Phe431Ser) mutations were found in HADHB. Enzymatic analysis in both lymphocytes and cultured fibroblasts revealed LCKAT deficiency with a normal long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD, also part of MTP) enzyme activity. Clinically, the patient showed recurrent cardiomyopathy, which was monitored by speckle tracking echocardiography. Subsequent treatment with special low-fat formula, low in long chain triglycerides (LCT) and supplemented with medium chain triglycerides (MCT) and ketone body therapy in (sodium-D,L-3-hydroxybutyrate) was well tolerated and resulted in improved carnitine profiles and cardiac function. Resveratrol, a natural polyphenol that has been shown to increase fatty acid oxidation, was also considered as a potential treatment option but showed no in vitro benefits in the patient's fibroblasts. Even though our patient deceased at the age of 13 months, early diagnosis and prompt initiation of dietary management with addition of sodium-D,L-3-hydroxybutyrate may have contributed to improved cardiac function and a much longer survival when compared to the previously reported cases of isolated LCKAT-deficiency.

14.
J Inherit Metab Dis ; 45(4): 804-818, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35383965

RESUMO

Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is included in many newborn screening (NBS) programs. Acylcarnitine-based NBS for LCHADD not only identifies LCHADD, but also the other deficiencies of the mitochondrial trifunctional protein (MTP), a multi-enzyme complex involved in long-chain fatty acid ß-oxidation. Besides LCHAD, MTP harbors two additional enzyme activities: long-chain enoyl-CoA hydratase (LCEH) and long-chain ketoacyl-CoA thiolase (LCKAT). Deficiency of one or more MTP activities causes generalized MTP deficiency (MTPD), LCHADD, LCEH deficiency (not yet reported), or LCKAT deficiency (LCKATD). To gain insight in the outcomes of MTP-deficient patients diagnosed after the introduction of NBS for LCHADD in the Netherlands, a retrospective evaluation of genetic, biochemical, and clinical characteristics of MTP-deficient patients, identified since 2007, was carried out. Thirteen patients were identified: seven with LCHADD, five with MTPD, and one with LCKATD. All LCHADD patients (one missed by NBS, clinical diagnosis) and one MTPD patient (clinical diagnosis) were alive. Four MTPD patients and one LCKATD patient developed cardiomyopathy and died within 1 month and 13 months of life, respectively. Surviving patients did not develop symptomatic hypoglycemia, but experienced reversible cardiomyopathy and rhabdomyolysis. Five LCHADD patients developed subclinical neuropathy and/or retinopathy. In conclusion, patient outcomes were highly variable, stressing the need for accurate classification of and discrimination between the MTP deficiencies to improve insight in the yield of NBS for LCHADD. NBS allowed the prevention of symptomatic hypoglycemia, but current treatment options failed to treat cardiomyopathy and prevent long-term complications. Moreover, milder patients, who might benefit from NBS, were missed due to normal acylcarnitine profiles.


Assuntos
Cardiomiopatias , Hipoglicemia , Erros Inatos do Metabolismo Lipídico , Rabdomiólise , 3-Hidroxiacil-CoA Desidrogenases , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Humanos , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Biologia Molecular , Triagem Neonatal , Doenças do Sistema Nervoso , Países Baixos , Estudos Retrospectivos , Rabdomiólise/diagnóstico , Rabdomiólise/genética
15.
Sci Rep ; 12(1): 2512, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169201

RESUMO

Peroxisomes play an important role in the metabolism of a variety of biomolecules, including lipids and bile acids. Peroxisomal Membrane Protein 4 (PXMP4) is a ubiquitously expressed peroxisomal membrane protein that is transcriptionally regulated by peroxisome proliferator-activated receptor α (PPARα), but its function is still unknown. To investigate the physiological function of PXMP4, we generated a Pxmp4 knockout (Pxmp4-/-) mouse model using CRISPR/Cas9-mediated gene editing. Peroxisome function was studied under standard chow-fed conditions and after stimulation of peroxisomal activity using the PPARα ligand fenofibrate or by using phytol, a metabolite of chlorophyll that undergoes peroxisomal oxidation. Pxmp4-/- mice were viable, fertile, and displayed no changes in peroxisome numbers or morphology under standard conditions. Also, no differences were observed in the plasma levels of products from major peroxisomal pathways, including very long-chain fatty acids (VLCFAs), bile acids (BAs), and BA intermediates di- and trihydroxycholestanoic acid. Although elevated levels of the phytol metabolites phytanic and pristanic acid in Pxmp4-/- mice pointed towards an impairment in peroxisomal α-oxidation capacity, treatment of Pxmp4-/- mice with a phytol-enriched diet did not further increase phytanic/pristanic acid levels. Finally, lipidomic analysis revealed that loss of Pxmp4 decreased hepatic levels of the alkyldiacylglycerol class of neutral ether lipids, particularly those containing polyunsaturated fatty acids. Together, our data show that while PXMP4 is not critical for overall peroxisome function under the conditions tested, it may have a role in the metabolism of (ether)lipids.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais/genética , Animais , Ácidos e Sais Biliares/metabolismo , Sistemas CRISPR-Cas , Dieta/métodos , Feminino , Fenofibrato/administração & dosagem , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução/efeitos dos fármacos , PPAR alfa/metabolismo , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Ácido Fitânico/metabolismo , Fitol/administração & dosagem
16.
J Inherit Metab Dis ; 45(3): 445-455, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35174513

RESUMO

A deficiency of 3-hydroxyisobutyric acid dehydrogenase (HIBADH) has been recently identified as a cause of primary 3-hydroxyisobutyric aciduria in two siblings; the only previously recognized primary cause had been a deficiency of methylmalonic semialdehyde dehydrogenase, the enzyme that is immediately downstream of HIBADH in the valine catabolic pathway and is encoded by the ALDH6A1 gene. Here we report on three additional patients from two unrelated families who present with marked and persistent elevations of urine L-3-hydroxyisobutyric acid (L-3HIBA) and a range of clinical findings. Molecular genetic analyses revealed novel, homozygous variants in the HIBADH gene that are private within each family. Evidence for pathogenicity of the identified variants is presented, including enzymatic deficiency of HIBADH in patient fibroblasts. This report describes new variants in HIBADH as an underlying cause of primary 3-hydroxyisobutyric aciduria and expands the clinical spectrum of this recently identified inborn error of valine metabolism. Additionally, we describe a quantitative method for the measurement of D- and L-3HIBA in plasma and urine and present the results of a valine restriction therapy in one of the patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Espectrometria de Massas em Tandem , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Cromatografia Líquida , Humanos , Hidroxibutiratos/urina , Oxirredutases , Valina
17.
Artigo em Inglês | MEDLINE | ID: mdl-35217562

RESUMO

Sodium-dependent multivitamin transporter (SMVT) deficiency is a recently described multivitamin-responsive inherited metabolic disorder (IMD) of which the phenotypic spectrum and response to treatment remains to be elucidated. So far, four pediatric patients have been described in three case reports with symptoms ranging from severe neurodevelopmental delay to feeding problems and failure to thrive, who demonstrated significant improvement after initiation of enhancement of targeted multivitamin treatment (biotin, pantothenic acid, and lipoic acid). We describe a fifth case of a patient presenting at the relatively mild end of the phenotypic spectrum with failure to thrive, frequent vomiting and metabolic acidosis with hypoglycemia, and mild osteopenia, who was diagnosed with SMVT deficiency due to compound heterozygous variants in SLC5A6 Additional genetic testing of variants of unknown significance (VUSs) as well as the clinical improvement in all aspects of the patient's disease upon initiation of treatment with biotin and pantothenic acid (plus lipoate as antioxidant) aided in the confirmation of this diagnosis. This case report aims to enhance recognition of the broad phenotypic spectrum of SMVT deficiency due to SLC5A6 mutations and discusses the different treatment strategies. It demonstrates how combining biochemical and genetic testing with the evaluation of (early) treatment response (i.e., using a "diagnostic therapeuticum") can influence confirmation of pathogenicity of genomic variants.


Assuntos
Biotina , Simportadores , Biotina/metabolismo , Biotina/uso terapêutico , Criança , Insuficiência de Crescimento , Humanos , Ácido Pantotênico/metabolismo , Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo
19.
J Inherit Metab Dis ; 45(1): 29-37, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382226

RESUMO

Barth syndrome is an X-linked disorder characterized by cardiomyopathy, skeletal myopathy, and neutropenia, caused by deleterious variants in TAFAZZIN. This gene encodes a phospholipid-lysophospholipid transacylase that is required for the remodeling of the mitochondrial phospholipid cardiolipin (CL). Biochemically, individuals with Barth syndrome have a deficiency of mature CL and accumulation of the remodeling intermediate monolysocardiolipin (MLCL). Diagnosis typically relies on mass spectrometric measurement of CL and MLCL in cells or tissues, and we previously described a method in blood spot that uses a specific MLCL/CL ratio as diagnostic biomarker. Here, we describe the evolution of our blood spot assay that is based on the implementation of reversed phase-UHPLC separation followed by full scan high resolution mass spectrometry. In addition to the MLCL/CL ratio, our improved method also generates a complete CL spectrum allowing the interrogation of the CL fatty acid composition, which considerably enhances the diagnostic reliability. This addition negates the need for a confirmatory test in lymphocytes thereby providing a shorter turn-around-time while achieving a more certain test result. As one of the few laboratories that offer this assay, we also evaluated the diagnostic yield and performance from 2006 to 2021 encompassing the use of both the original and improved assay. In this period, we performed 796 diagnostic analyses of which 117 (15%) were characteristic of Barth syndrome. In total, we diagnosed 93 unique individuals with Barth syndrome, including three females, which together amounts to about 40% of all reported individuals with Barth syndrome in the world.


Assuntos
Síndrome de Barth/diagnóstico , Cardiolipinas/sangue , Linfócitos/metabolismo , Lisofosfolipídeos/sangue , Adolescente , Adulto , Síndrome de Barth/sangue , Criança , Pré-Escolar , Feminino , Humanos , Modelos Lineares , Linfócitos/química , Masculino , Espectrometria de Massas , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...